WASHINGTON Wojciech Szczesny Jersey , Sept. 14 (Xinhua) -- Scientists have created miniature robots out of DNA that can autonomously "walk" around a surface, pick up certain molecules and drop them off in designated locations, a new study published Thursday in the U.S. journal Science said.
"Just like electromechanical robots are sent off to faraway places, like Mars, we would like to send molecular robots to minuscule places where humans can't go, such as the bloodstream Stephan Lichtsteiner Jersey ," said LuLu Qian, assistant professor of bioengineering of the California Institute of Technology.
Such technology could one day be used for a wide range of applications, including synthesizing therapeutic chemicals in an artificial molecular factory, delivering drugs in bloodstreams or cells, or sorting molecular components in trash for recycling, Qian said.
To create a DNA robot Stefano Sturaro Jersey , Qian's team constructed three basic building blocks, including a "leg" with two "feet" for walking, an "arm" and "hand" for picking up cargo, and a segment that can recognize a specific drop-off point and signal to the hand to release its cargo.
Each of these components is made of just a few nucleotides within a single strand of DNA.
In principle, these modular building blocks could be assembled in many different ways to complete different tasks.
For example, a DNA robot with several hands and arms Sami Khedira Jersey , could be used to carry multiple molecules simultaneously.
In the work described in the Science paper, the Qian group built a robot that could explore a molecular surface, pick up two different molecules and then distribute them to two distinct regions on the surface.
"The DNA robot moves around on a 58-nanometer-by-58-nanometer pegboard on which the pegs are made of single strands of DNA complementary to the robot's leg and foot," Qian's team said in a statement.
"The robot binds to a peg with its leg and one of its feet -- the other foot floats freely," the team